
Application of Genetic Algorithms in Machine
learning

Harsh Bhasin#, Surbhi Bhatia*
#Computergard.com

Faridabad, India

* Amity University,
 Noida, Uttar Pradesh,India

Abstract— This Genetic Algorithms (GAs) are a type of
optimization algorithms which combine survival of the fittest
and a simplified version of Genetic Process .It has as yet not
been proved whether machine learning can be considered as a
problem apt for applying GAs. Therefore the work explores
the use of GAs in Machine learning. A detailed study on the
success of GAs in machine learning was carried out by R. D.
King, R. Henery, C. Feng, and A. Sutherland [4] but it was
limited to comparison. The paper takes the example of Chess
to apply GA and proposes a new technique to apply GA to
machine learning which can substitute the existing
methodologies .The work proposed is shown to be robust and
thus making the learning a natural process rather than an
algorithmic one. The paper relies on the randomness of GAs
and their ability to make the population converge towards the
desired point using a fitness function and combines it with the
concept of feedback similar to that of neural networks.

Keywords— Genetic Algorithm, Machine learning, Classifier,
Supervised learning.

I. INTRODUCTION
Genetic algorithms help in heuristic search. It is a

contentious point whether GA’s can be applied to machine
learning. The point has been explored and explained in the
following work by taking example of chess playing. The
definition and types of classifier systems have been
explained in the first section followed by explanation of
machine learning. This is followed by the brief analysis of
genetic algorithms. The application of GA’s to machine
learning taking the example of chess has been explained in
section IV. It has been found that if there are many rules to
be applied for a particular condition then GA’s give an
effective solution if the rules can be assigned correct fitness
values.

II. CLASSIFIER SYSTEM
A classifier system is a system that learns syntactically
simple rules called classifiers through credit assignment and
rule discovery mechanisms. These systems recognize new
information continuously from the environment. They
develop assumptions without altering the acquired
capabilities. The above can also be used to make an expert
system a reality. Classifier systems determine the ranking
among the population members via multiple interactions
with the environment whereby the strength changes occur
via the apportionment of credit subsystem of classifier
system [4].
The performance of the classifier system depends on the
classifiers length. The performance increases as the length
increases. So the plausibility of it devising an action after
encountering a new condition increases.
Classifiers match messages and actions generated from
them modify the environment. The systems have detectors
and effecters. Detectors select certain aspects of

environment and translate the input to a binary form to be
processed by classifiers [5]. Effectors translate binary into a
form to modify the environment. The components of a
classifier System are
A. Input interface
It uses detectors and converts the binary form into standard
messages.
B. Classifiers
 Classifiers process messages using system procedures.
C. Message list
Message list has the list of current messages
D. Output interface
 It generates the output in the desired form.

The steps of execution cycle includes as per the literature
review are [5]

Fig. 1 Working of Classifier

III. MACHINE LEARNING
Machine learning deals with the design of algorithms that
permit computers to develop behaviours based on empirical
data. In machine learning the computer learns. A learner
can take advantage of examples to incarcerate
characteristics of importance of their unfamiliar basic
probability distribution. The examples illustrate the relation
between the input and desired result. A major task of
machine learning research is to automatically learn to
identify multifaceted patterns and make intelligent
decisions based on examples. The set of all possible
behaviours given all possible inputs is too large to be
covered by the set of observed examples. Hence the learner

Harsh Bhasin et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2412-2415

2412

must take a broad view from the given examples, so as to
be able to fabricate a useful output in new cases [1].
According to Tom M. Mitchell ‘A computer program is
said to learn from experience E with respect to some class
of tasks T and performance measure P, if its performance at
tasks in T, as measured by P, improves with experience
E’.[2]
The core purpose of a learner is to generalize from its
experience [3] .The teaching examples from its experience
come from some usually indefinite pattern and the learner
has to take out from them something more general that
allows it to produce useful answers in new cases.

A. Strategies
There are many techniques and strategies used in machine
learning. Some of them are
• Inductive Logic Programming
• Simulated Annealing
• Evolutionary Strategies
• Neural Nets
Each of these methods have been analysed in the previous
papers [4] .In this paper only GA will be dealt with.
B. Types of Machine Learning Algorithms
Machine learning algorithms can be classified based on
desired outcome of the algorithm. It is of two types:
supervised and unsupervised.

 Supervised learning generates a function that maps
inputs to desired outputs. For example, in MS
Word speech to writing translation is possible. A
paragraph is taken and training is provided to the
machine i.e. computer in order to learn the
pronunciation and ellipses of the speaker.

 Unsupervised learning models a set of inputs, like
clustering.

Some more algorithms are based on the above two as
described in the following section.

 Semi-supervised learning combines both
supervised and unsupervised illustrations to
produce a classifier.

 Reinforcement learning learns how to act to a
given situation in a particular scenario. Every
action has some impact in the environment, and
the environment provides feedback in the form of
rewards and punishments.

 Transduction tries to predict new outputs based on
training inputs.
Learning to learn learns its own inductive bias

based on preceding occurrence.

IV. GENETIC ALGORITHM
A genetic algorithm is a search heuristic that mimics the
process of natural evolution used to generate useful
solutions to optimization and search problems. Genetic
algorithms are a subset of what we call evolutionary
algorithms which solves optimization problems using
techniques inspired by natural evolution, such as
inheritance, mutation, selection, and crossover [10].
John Holland, from the University of Michigan started his
work on genetic algorithms at the beginning of the 60s. A
first achievement was the publication of Adaptation in
Natural and Artificial System in 1975. Holland had two
aims, first to improve the understanding of natural

adaptation process, second to design artificial systems
having properties similar to natural systems. Holland
method considers the role of mutation and also utilizes
genetic recombination that is crossover to find the optimum
solution [10].
Crossover and mutation are two basic operators of GA.
Performance of GA very depend on them. Type and
implementation of operators depends on encoding and also
on a problem.
There are many ways how to do crossover and mutation.
A. Crossover

1) Single point crossover -
In this case one crossover point is selected, binary string
from beginning of chromosome to the crossover point is
copied from one parent, and the rest is copied from the
second parent
11001011+11011111 = 11001111

 2) Two point crossover
Here two crossover points are selected, binary string from
beginning of chromosome to the first crossover point is
copied from one parent, the part from the first to the second
crossover point is copied from the second parent and the
rest is copied from the first parent
11001011 + 11011111 = 11011111

3) Uniform crossover
In this method bits are randomly copied from the first or
from the second parent
11001011 + 11011101 = 11011111

B. Mutation
Mutation is a genetic operator used to maintain genetic
diversity from one generation of a population to the next. It
is similar to biological mutation [10].
Method given in most of the sources including Wikipedia:
An example of a mutation operator involves a probability
that an arbitrary bit in a genetic sequence will be changed
from its original state. A common method of implementing
the mutation operator involves generating a random
variable for each bit in a sequence. This random variable
tells whether or not a particular bit will be modified. This
mutation procedure, based on the biological point mutation,
is called single point mutation. Other types are inversion
and floating point mutation. When the gene encoding is
restrictive as in permutation problems, mutations are swaps,
inversions and scrambles.
The purpose of mutation in GAs is preserving and
introducing diversity. Mutation should allow the algorithm
to avoid local minima by preventing the population of
chromosomes from becoming too similar to each other.
C. Selection
Chromosomes are selected from the population to be
parents to crossover. According to Darwin’s evolution
theory the best ones should survive and create new
offspring. There are many methods how to select the best
chromosomes, for example roulette wheel selection [10].

1) Roulette Wheel Selection
Parents are selected according to their fitness. The better the
chromosomes are, the more chances to be selected they
have. Imagine a roulette wheel where are placed all
chromosomes in the population, every chromosome has
its place big accordingly to its fitness function.

Harsh Bhasin et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2412-2415

2413

V. PROPOSED WORK
The work proposed intends to find the fitness value of the
rule with the help of reinforced learning
algorithm .Reinforcement learning algorithms helps an
agent to improve its performance by using the feedback it
gets from the environment. In reinforcement learning the
system receives feedback which makes it closer to
supervised learning.

Chess programs suffer problems with positions where the
estimate depends primarily on positional features. The point
holds as these decisions might not have ramification in the
near scenes but have substantial effect in the later stages.
The recent programs can look incredibly deep ahead so they
are pretty good in scheming tactical lines. Winning material
in chess typically occurs within a few moves and therefore
most chess programs have a search-depth of at least 8 ply.
Deeper search can occur if there are only a few pieces on
the board.
Humans are able to recognize patterns in positions and
therefore derive important information on what a position is

about. Expert players are quite good in grouping pieces
together into chunks of information.

Computers analyse a position with the help of their chess
knowledge. The more chess knowledge it has, the longer it
takes for a single position to be evaluated, here is where
genetic can be applied. The playing strength not only
depends on the amount of knowledge, it also depends on
the time it takes to evaluate a position, because less
evaluation-time leads to deeper searches. If to each rule
corresponding to a particular condition fitness value can be
assigned then it becomes an apt case for applying Genetic
Algorithm.

Deep Blue for instance has its strength largely due to a high
search-depth. Other programs focus more on chess
knowledge and therefore have a relatively lower search-
depth. Based on the above approach a strategy of finding
out the right move in chess; at the junctions where many
moves are possible; has been proposed.

Fig.2: Process to apply rule Ri for a condition Cj

Harsh Bhasin et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2412-2415

2414

IV. CONCLUSIONS
The game of chess has following outcomes

White wins
Black wins
No Result: depending on the rules

The following have been implemented so far
A. Board Structure: This is contained in board.cs. The

entire board is stored in a 35-byte struct. It is a bit-field
which contains 64 1-bit unsigned char variables, each
containing the size that the piece at a specific square is
on and 64 3-bit unsigned char variables, each
containing the type of piece that is on a specific square.

B. Interface: This is in interface.cs. The code being
developed directly interacts with the user and specific
command .The program is in GUI .The code translates
column coordinates, converts numerical char values
into actual numerical values and numbers that stand for
different types of pieces into strings .

C. Validation: This is in validation.cs. This module
returns true or false depending on whether or not a
given move could be made on a board with no pieces
other than the one moving. This means that a king
moving more than two spaces will return false

D. Check Move Validation: This is done via Check () in
CMvalidation.cs.

E. Castling: This is handled through if statement in main ()
and Castle (). It uses variables in boards to make sure
that players who have already moved their kings cannot
castle.

F. End of Game: This is handled in endofgame.cs. At the
end of each round, the program finds out if the game is
in stalemate and if the player is in check.

G. Database consisting of rules and conditions.
H. Database consisting of expert opinion and effective

fitness values.
I. Classifier program which segregates the rules.
The proposal is being implemented but if completely
implemented it will have a better result as the time required
for searching the moves will be largely reduced. Moreover
it will give a way of incorporating GA in machine learning.

REFERENCES
[1]. Classifier System and Genetic Algorithm , L.B. Booker, D.E.

Goldberg and J.H. Holland ,Computer Science and
Engineering, 3116 EECS Building, The University of
Michigan, Ann Arbor, MI 48109, U.S.

[2]. Mitchell, T. (1997). Machine Learning, McGraw Hill. ISBN
0-07-042807-7, p.2.

[3]. Classifier System and Genetic Algorithm, Robert A. Richards
[4]. R. D. King, R. Henery, C. Feng, and A. Sutherland. A

Comparative Study of Classification Algorithms: Statistical,
Machine Learning, and Neural Network. In K. Furukawa, D.
Michie, and S. Muggleton, editors, Machine Intelligence,
volume 13, pages 311–359. Clarendon Press, 1994.

[5]. G. K´okai. GeLog - A System Combining Genetic Algorithm
with Inductive Logic Programming. In Proceedings of the
International Conference on Computational Intelligence, 7th
Fuzzy Days, pages 326–345. Springer-Verlag, 2001.

[6]. William B. Langdon and Riccardo Poli. Foundations of
Genetic Programming. Springer, 1998.

[7]. Arthur L. Samuel. Some Studies in Machine Learning Using
the Game of Checkers. I. In David Levy, editor, Computer
Games, volume 1, pages 335–365. Springer-Verlag, 1988.

[8]. C. Wyman. Using Genetic Algorithms to Learn Weights for
Simple King-Pawn Chess Endgames. Technical report,
University of Utah, 1999.

[9]. Learning rules from chess databases. World Wide Web.
http://web.comlabox.ac.uk/oucl/research/areas/machlearn/che
ss.html, 1999.

[10]. S. Thrun. Learning to Play the Game of Chess. In G. Tesauro,
D. Touretzky, and T. Leen, editors, Advances in Neural
Information Processing Systems (NIPS) 7, Cambridge, MA,
1995. MIT Press.

[11]. Alan M. Turing. Chess. In David Levy, editor, Computer
Chess Compendium, pages 14–17. Springer-Verlag, 1953.

[12]. Harsh Bhasin, Cryptography using genetic algorithms,
ICRITO 2010.

[13].

Harsh Bhasin et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2412-2415

2415

